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Abstract- This paper presents an efficient means to access indexed 
hierarchical databases using a relational query language. The purpose of 
this paper is an effective sharing of heterogeneous distributed databases. 
We investigate 1) translation of hierarchical data definition to an equiv- 
alent relational data definition, 2) translation of a relational query 
language statement to an equivalent program processable by a hierarchi- 
cal database management system, and 3) automatic selection of secondary 
indexes of hierarchical databases. A major portion of the result has been 
implemented and the performance of the implemented system is analyzed. 
The performance of the system is satisfactory for a wide range of test data 
and test queries. It is shown that the utilization of the secondary index 
significantly enhances the efficiency in accessing hierarchical databases. 

Index Terms-Data model, data manipulation language, heterogeneous 
database, translation, hierarchical database, relational query language, 
index, performance. 

I. INTRODUCTION 

An effective sharing of heterogeneous databases is essential to 
organizations with diverse database management systems (DBMS’s). 
DATAPLEX [2] is a heterogeneous distributed DBMS which will 
provide a common view of diverse databases and a standard query 
language for organization-wide data sharing. In the architecture of 
DATAPLEX, a relational model is used to provide a common view of 
data and SQL is selected as a standard query language. A prototype 
DATAPLEX which interfaces an IMS hierarchical DBMS and an 
INGRES relational DBMS shows the feasibility of the DATAPLEX 
architecture. 

An interface to IMS in the DATAPLEX environment is important 
because IMS has been the most heavily used mainframe DBMS in 
large corporations. In addition, the techniques to interface IMS can 
be applied to interface other nonrelational DBMS’s such as network 
DBMS’s and object-oriented DBMS’s. 

IMS is based on a hierarchical data model and uses DW1 as a data 
manipulation language. While SQL is a high level query language, 
DL/1 is a set of subroutine calls that must be embedded in a host 
language, such as PL/1 or COBOL. Therefore, the interface to a 
hierarchical DBMS poses a difficult translation problem. Another 
major issue is the use of IMS secondary indexes. The secondary 
index is an integral part of data management. The secondary index 
management of IMS is quite different from that of the relational 
DBMS. 

Due to the need for a rapid prototyping, the prototype DATAPLEX 
uses DXT [6] as an SQL to DL/1 translator. DXT is an IBM 
product which translates a subset of SQL to DL/l. The experience 
of DXT in the prototype DATAPLEX leads to a conclusion that the 
performance of DXT is not adequate and the subset of SQL supported 
by DXT is too restrictive for a full-function DATAPLEX. Therefore, 

we decided to develop an SQL interface to IMS. This interface is 
called SQL/IMS. 

Based on the research results presented in this paper, the detailed 
design of SQL/IMS has been completed and a major portion of the 
design has been implemented. Benchmarks were prepared to test 
various features and the performance of SQL/IMS. The comparison of 
performance of SQL/IMS, DXT, and PL/1 programs was conducted 
using a large production database. 

In Section 11, the translation of IMS data definitions to equivalent 
relational data definitions is presented. The translation of an SQL 
query to a DL/l program and the execution of the program are 
discussed in Section 111. Section IV explains the automatic selection 
of IMS secondary indexes. Section V describes the implementaion of 
SQL/IMS and the result of benchmark executions. 

11. DATA DEFINITION TRANSLATION 

A. Hierarchy to Relation Mapping 
Each IMS segment type is mapped to a relation. The relation 

corresponding to a segment type will include the key attributes of each 
predecessor of the segment type in the hierarchy. This is intended 
to produce a simple and normalized set of relations. This method 
is illustrated in Example 1 in Section IV. Relations defined on the 
dependents of nonkey segments do not include any attributes from 
the nonkey segments. The navigation through access paths to access 
multiple segments can be accomplished by equijoining relations in 
an equivalent relational data definition on common key attributes. 

The repeating group is an exception to the general mapping rules. 
Repeating groups are common in IMS segment definitions. Since the 
relational model has no provision for repeating groups they have 
to be mapped to appropriate relational data structures. In general, a 
repeating group can be mapped to an additional relation. Consider a 
segment type X( k X ,  f S, f G, f H), where k S  is a list of key fields 
of segment type X ,  f S is a list of nonkey fields of S, and f G and 
f H qre the list of fields of repeating group G and H, respectively. 
The equivalent relational data definition of this segment type consists 
of the following three relations: 

R X ( k R X ,  fX). RG(kRX.  fG),RH(kRX.fH) 

where kRX is the key of RX including the keys of all the 
predecessors of -ri in the hierarchy. If S is a root segment type, 
k R S  = kX. 

Certain repeating groups, however, cannot be mapped to additional 
relations as follows: 
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The position of a repeating group occurrence is significant. 
For instance, SALES repeating group with the n th occurrence 
indicating the sales figure of the nth month of a year. Such 
a repeating group cannot be mapped to a relation because the 
order of tuples in a relation is immaterial. 
The relation mapped from a segment type containing a repeating 
group does not have a key. In case of the segment type -Y above, 
the relationship of which occurrences of the repeating group G 
belong to which occurrence of the segment -Y can be identified 
by joining RG and RS on kR.Y because k R S  is the key of 
RS. If R S  did not have a key, the relationship between the 
occurrences of X and G cannot be identified. 
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Therefore, these repeating groups are mapped in a simple linear 
form. For example, a repeating group G, with fields f l ,  f2 .  . . . , f T l l ,  

which can have a maximum of 77 occurrences would map as 
G1, Gr. .  . . . G,,, where G, = o , ~ ,  n r 2 . .  . . . nL7, ,  with relational 
attributes n t J  for j = 1.2. .  . . , nt .  

B. Source of Mapping Information 
The information on IMS data definition necessary for translation 

comes from various sources. In this subsection, we explain three 
important data description features of IMS: the database definition, 
the program specification block, and the program communication 
block. IMS databases are defined in the database definitions (DBD’s). 
The DBD’s supply all the physical description information for IMS to 
create the database, such as access methods, storage devices, segment 
size/ hierarchical position, and segment key attribute descriptions. 
The segment nonkey attributes are usually defined in the application 
programs that use the database. 

Access to an IMS database is always from a procedural (i.e., 
COBOL, Assembler, PL/1 or “C”) language program. In order for 
the program to communicate with IMS, an interface control block 
called the program specification block (PSB) must be defined. Within 
the PSB, access to multiple IMS databases may be provided by 
defining one program communication block (PCB) per database 
access required. 

Although IMS primarily supports a hierarchical structure, net- 
work style structures are possible via IMS logical databases (which 
are actually physical links). Existing physical IMS hierarchies are 
connected using physical pointers to form new “logical” hierarchies. 

This additional structure could cause a mapping problem as not 
all IMS structures would be hierarchies. Fortunately, there is a 
simple solution; mapping is always based on the PSB. Since all IMS 
databases described in a PSB present a consistent data structure (a 
hierarchy), regardless of the underlying physical data strucure, this is 
the most reasonable point from which to map. 

The mapping information collected from the above indicated 
sources is stored in two files: the physical definition table (PDT) 
and the view definition table (VDT). The PDT contains all the IMS 
access information for each attribute. The VDT contains a definition 
of the relation as seen by the user. This provides three main features: 
attributes names to be aliased, attribute type coercion, and relation 
subsets to be formed. 

111. QUERY TRANSLATION AND EXECUTION 

Before discussing query translation and execution, the level of 
SQL to be considered must be defined. One of the major issues in 
developing an SQL interface to IMS is the incompatibility between 
SQL and DL/l. SQL is a set (set of records) oriented language, 
whereas DL/l is a record-oriented language. 

SQL has more features than DL/1 and consequently there is no 
DL/1 feature to which certain SQL features can be translated. These 
SQL features must be implemented without using DL/1 features. 
However, some of the SQL features are seldom used in appli- 
cations. In fact, the most frequently used SQL features are the 
ones corresponding to relational operations selection, projection, and 
equijoin. These three operations can be translated to DL/1 features, 
and equijoin can especially be processed very efficiently using DL/1 
because, in many cases, the relationship between two entities is 
implemented by pointers in IMS databases. 

Based on the above facts, we have defined a subset of SQL to be 
used by SQL/IMS with the following guiding principles: 

include all SQL features that can be translated to DL/1 features 
to make use of efficient IMS capabilities; 

include SQL features that are frequently used in applications so 
that most of the applications can be covered by the defined SQL 
subset; 
exclude SQL features that are seldom utilized to avoid the 
implementation of a relational DBMS and the runtime overhead 
of a large system. 

Included in our SQL subset are: 
SELECT - with DISTINCT, ORDER BY, equijoin, attribute 
expressions, set functions (MAX, MIN, AVG, SUM, COUNT); 
UPDATE - ANSI syntax [ l ]  with limited search conditions (see 
excluded below); 
INSERT - ANSI syntax from value list only, subselect is not 
supported; 
DELETE - ANSI syntax with limited search conditions (see 
excluded below). 
Excluded in our SQL subset are: 

HAVING, GROUP BY, nested queries and non-equijoins in 
SELECT statements; 
For all statements (SELECT, UPDATE, INSERT, DELETE), 
NULL and EXISTS are not supported in WHERE clauses. 

A nested query can be transformed to an equivalent non-nested 
query. All the above SQL statements can be implemented for in- 
teractive and embedded interfaces. Thus transactions are supported. 
All the usual embedded cursor commands (e.g., DECLARE, OPEN, 
CLOSE, WHERE CURRENT OF, and FETCH) are included. 

An SQL query which uses unsupported SQL features is decom- 
posed by DATAPLEX into two queries: Q1 (Query 1) contains 
supported SQL features, and Q2 is the remaining part of the original 
query. Then, Q1 is sent to SQL/IMS which translates it to a DL/1 
program and submits the program to IMS. Q2 and the result of Q 1  
are fed to a relational DBMS (which may be at a remote location). 
The result of Q2 is the result of the original query. 

Our approach to process an SQL query submitted to SQL/IMS is 
to decompose the query into simpler queries that can be processed 
by IMS and then perform remaining relational operations on the 
intermediate results retrieved from IMS to obtain the final result. 
There are two ways to translate a decomposed simple SQL query 
to a DL/1 program: 1) to generate DL/1 code on the fly, and 2)  to 
generate parameter values from the SQL query and feed them to a 
fixed parameterized DL/1 program. We take the second approach for 
its simplicity and efficiency. 

The process of query decomposition/translation involves breaking 
the query down into units simple enough to be executed by an IMS 
application program and converting them to an acceptable format. 
For the sake of brevity this process will be referred to as translation. 
There are seven steps of translation that all queries must pass through 
prior to execution. Each step either removes functions that are not 
processable by IMS or splits the query into subqueries that reference 
a smaller range of data. For each act of translation imposed on 
a query, a complementary recomposition query is generated to be 
executed once the data has been retrieved from IMS. The seven steps 
of translation are as follows: 

remove operations in target lists nonsupported by IMS, such 
as set functions; 
convert predicates to disjunctive normal form; 
remove expressions from predicates of resulting conjunctive 
queries; 
convert queries to graphs by representing a relation as a node 
and a search condition as an arc; 
decompose by database because an IMS query (DLD call) may 
reference only one database; 
decompose by cutting the equijoin arcs that do not correspond 
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to equijoins processable by navigating access paths between 
IMS segment types. We call this type of equijoin a pathjoin; 

7) select an IMS secondary index on attributes in a subquery. This 
step is explained in detail in Section IV. 

At this point the subqueries are processable by the IMS inter- 
face program, the fixed parameterized DL/1 program. A detailed 
description of steps 1)-6) can be found in [3 ] .  

After translation, the query is executed and the result recomposed. 
The query graph of a subquery contains the necessary parameter 
values for the fixed parameterized DL/1 program. The individual 
subqueries are passed to the IMS interface program for execution. 
Once all the subqueries have executed, the recomposition queries are 
applied against the retrieved data in the reverse order in which they 
were created during translation as follows: 

1) non-pathjoin equijoin; 
2 )  qualification clause expression; 
3) union of results from conjunctive subqueries; 
4) DISTINCT; 
5) set Function; 
6) target list expression; 
7) sorting, i.e., ORDER BY. 

IV. INDEX SELECTION 

IMS provides the capability to define mulitiple indexes for a 
database. In general, IMS databases have at least one index called the 
primary index that is defined as part of the initial database definition. 
The primary index describes the actual physical ordering of the data- 
base segments. Additional indexes may be defined providing alternate 
access paths to database segments. These are called secondary index 
databases. 

There are three problems in providing automatic index selection. 
1) In order to utilize a secondary index, the IMS application 

must use a PCB (within the target PSB) that specifies the 
secondary index database for its processing sequence. In the 
mapping provided in the PDT, the primary index PCB is 
defined. Therefore, the mapping must be dynamically altered 
to take advantage of a secondary index. 

2) IMS does not directly support composite keys. It is quite 
common in IMS databases for a composite key to be defined 
to IMS as a single character string which is then broken down 
into its component attributes by the application program. 

3 )  A secondary index database that indexes a segment of the 
hierarchy other than the root segment will cause the hierarchy 
to be inverted with the indexed segment assuming the root 
position. The hierarchical mapping information stored in the 
query graph must be dynamically altered to correctly depict 
the new access path. 

Each subquery is tested for potential substitution of an index for 
its component attributes. (An index and an alternate key on which the 
index is set are used interchangeably.) This is done by using a table 
of indexes, available via the target PSB, called the segment index 
table (SIT). In the default mapping provided in the PDT, the primary 
index PCB will be selected, if 1) primary key search is used or 2) no 
key search qualification is specified (i.e., scan the entire database). 

For each index, the SIT contains the three mappings required to 
transform the query: PCB, composite key, and hierarchy. The PCB 
map gives the name of the PSB, the PCB position within the PSB, 
and the name of the segment type that is the target of the index. The 
composite key map describes the attributes that form the key of the 
target segment type to the key attribute name as it is defined in IMS. 
The hierarchy map describes the relationships of the segment types 
that form the structure created through the use of the index. 

There are two restrictions imposed in using indexes. The first is that 
only one table of the subquery may be selected for index substitution. 
This is due to the IMS requirement that database access is managed 
via a PCB and that a PCB may only reference a single index. 
Therefore, all the tables of a subquery must be accessed through the 
same PCB. It is an inherent disadvantage of the hierarchical database 
such as IMS that multiple indexes cannot be used simultaneously. 
However, this disadvantage is offset by the advantage that the 
reduction of search for a segment using an index reduces search for 
all segments connected by access paths to the segment. 

Secondly, the substitution of an index for its component attributes 
is limited. Consider a composite index I consisting of attributes 
A and B. Suppose A and B take values from characters o to 
s for simplicity. The qualification clause (A = U AND B = 1 1 )  

is equivalent to ( I  = u t i ) .  However, the qualification clause (A 
> U AND B > 1 1 )  is not equivalent to ( I  > U ( , ) .  An equivalent 
qualification clause generated from the two conditions is ( I  > 113 

33)). As the number of attributes comprising an index grows, the 
number of conditions generated in a qualification clause using the 
index grows exponentially, which makes the manipulation and use 
of the qualification clause impractical. Therefore, complete equality 
comparisons are allowed. All others are partially transformed except 
that not equal (i.e., <>) comparisons are not transformed. 

The stratgey of our index selection algorithm is discussed below. 
For each segment type referenced in a subquery, the SIT is searched 
for an index to that segment. For each index found, the subquery 
search conditions are tested for qualifications that refer to the at- 
tributes that comprise the index. For an index to become a candidate 
for substitution, the left-most attribute of the index must be referenced 
in a qualification clause. If all the attributes of an index are referenced 
and the comparison operators on the attributes are all “=,” then all 
the attributes are used for an index substitution. If i attributes from 
the left of an index are referenced with the comparison operator “=,” 
then the i attributes are used. Otherwise, only the left-most attribute of 
the index is used. The attribute(s) usable for an index substitution are 
called qualified attribute(s). The index containing qualified attributes, 
the sum of the lengths of which is the longest (in bytes), is selected 
to reduce search as much as possible. If, after all the SIT’S have 
been checked, a suitable index was found, then the query graph 
is modified. The query qualification is tested again for additional 
substitutions using the selected index. This is necessary as a user 
may specify a range qualification (i.e., .-I > 0 AND .-I < 100). The 
test and substitute process is repeated until no more substitutions are 
possible. The algorithm for index selection is as follows. 

AND (a t /  < I <= 0: OR bt/  < I <= b: OR ... OR :U < I <= 

Algorithm I 
Input: the query graph and SIT. 
Output: revised query graph and new PCB 

initialize F ,  the final index selected, to be 

initialize F L ,  the length of the final index 
null. 

selected, to 0. 

€or each relation, R , ,  referenced in the graph: 

if S, isnot an index €or the target segment 

then skip to the next S,. 
the index represented by S, becomes thecan- 

using C ,  compute the sum of the lengths, 

for each element, s,, of the SIT: 
referenced by R, 

didate index, C. 
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kA kC c ,  c a  c ,  c ,  

Fig. 1. Example IMS database hierarchy. 

RD 

C L ,  of the qualified attributes. 

to F L .  
if C L  > F L  then assign C to F and C L  

kA kC kD dl da 

if F L  > 0 
for each relation in the query graph, 
rebuild the hierarchical information that 
describes therelative position ofthe seg- 
ment mapped to this relation. 

change the default PCB to the PCB that 
provides F .  

while F L  > 0 
modify the query graph by substituting 
the index for the component attributes 
as follows: 

;suppose F consists of component 
attributes al. a2,. . . ,a,, , where 

; a ,  is the ith component from the 
left. MAX denotes the patching 

;of the unused bits with binary 1 
and MIN with binary 0. 

Case 1: 

Case 2: 

Case 3 :  

Case 4 :  

Case 5: 

Case 6: 

if there is 

modify (a1 = S I  AND a2 = s 2  

to ( F  = ~1.23.. . . r l , )  where x, is 

modify (a1 = .rl AND a2 = s2 
AND . . .  AND a L  = s, ) with 
i < ?I to ( F  >= x1.rZ....rI 1 1  MIN 
AND F <=.r1.r2...sL ( 1  MAX) 
where 1 1  denotes concatena- 
tion. 
modify (a1 > S I )  

modify (a1 >= SI) 
to ( F  >= s1 ( 1  MIN). 
modify (a1 < xl) 

modify (a1 <= S I )  
to ( F  <= x 1  1 1  MAX). 

AND . . .  AND a, = x,,) 

the value of ah. 

to (F > S I  1 )  MAX). 

to ( F  < X I  1 1  MIN). 

no qualified attribute for 
F in the query qualification, update 
F L  to 0. 

End Algorithm I 

The following example illustrates the Algorithm I. 
Example 1: Consider the IMS database hierarchy shown in Fig. 

1. Segment attributes are shown in parentheses. Primary key fields 
are denoted as k X  (“key of -Y). 

The relational mappings for the segment types in Fig. 1 are depicted 

Fig. 2. Relational data definition of segment types in Fig. 1. 

Fig. 3 Changed hierarchy for I ( B ) .  

IDI 
lel 

Fig. 4. Changed hierarchy for I ( C ) .  

in Fig. 2. IMS secondary indexes are denoted as I(-Y) (“index of X”). 
The length of each attribute in bytes is also shown. 

As explained previously, the use of an IMS secondary index 
database may alter the hierarchy. For the indexes shown in Fig. 2, 
the resulting hierarchies for I ( B )  and I (  C) are shown in Figs. 3 and 
4, respectively. I (  A )  does not change the hierarchy. 

Assume a PSB has been created with the first PCB assigned to 
the original database and the subsequent three PCB’s assigned to 
indexes I ( A ) ,  I ( B ) ,  and I ( C ) ,  respectively. For each of the primary 
and secondary indexes shown previously, their respective SIT entries 
are given in Table I. 

Suppose the following query is issued: 

FROM RA,RC 
SELECT * 
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TABLE I 
SEGMENT INDEX TABLE (SIT) FOR EXAMPLE 1 #I Index Segment PCB Hierarchy name, length Attrib;ltes 

< ( k A ,  5) > 

Fig. 1 < (kAA,5)(kC,4) > 
Fig. 1 < ( k 2 A , 5 ) ( k C . 4 ) ( k D , 5 )  > 
Fig. 1 
Fig. 3 

< ( n 1 , 5 ) ( a z .  5 )  > 
< ( b l .  10) > 

WHERE R A k A  = RC.kA 
AND a1 > x 
AND ~2 = y 
AND ~3 = f 

AND C.I <> U 

After parsing, the query would be translated to a query graph that 
would be passed to the Algorithm I. The processing steps of the 
algorithm are shown in the following. 

for the relation, RA 
SIT #1 is for segment ,4 

k.4 becomes the candidate index c 
C L  becomes 0 because kA is not a qualified 

C L  is not greater than 0 
attribute 

SIT #2 is for segment B 
SIT #3 is for segment C 
SIT #4 is for segment D 
SIT #5 is for segment A 

I ( A )  becomes the candidate index C 
C L  becomes 5 because a1 is a qualified 

C L  is greater than 0 so assign I ( A )  to F 
attribute 

and 5 to F L  
SIT #6 is for segment B 
SIT #I is for segment c 
SIT #1 is for segment ii 
SIT #2 is for segment B 
SIT #3 is for segment C 

for the relation, RC 

kA,kC becomes the candidate index C 
C L  becomes 0 because kA is not a qualified 

C L  is not greater than 5 
attribute 

SIT #4 is €or segment D 
SIT #5 is for segment A 
SIT #6 is for segment B 
SIT #7 is for segment c 

I ( C )  becomes the candidate index C 
C L  becomes 8 because ~ 2 . ~ 3  are qualified 

C L  is greater than 5 so assign I ( C )  to F 
attributes 

and 8 to F L  

F L  is greater than 0 
rebuild the hierarchical information €or RA 

change the PCB from 1 to 4 
and RC using the hierarchy in Fig. 4 

by Case 2: modify ( C Z  = y AND cg = :) to 
( I ( c )  >= yf 1 )  0000' AND 

I ( C )  <= y: 1 1  ' F F F F ' )  

159 

Fig. 5. Structure of MMIS database (number of occurrences). 

there are n o  more qualified attributes for 
I ( C ) ,  change F L  to 0. 

The modified query is as follows: 
SELECT * 

FROM RA,RC 

AND a1 > s 
AND I ( c )  >= y3 1 )  '0000' 
AND I ( C )  <= y s  ( 1  ' F F F F '  
AND ~1 <> ( I  

WHERE RAAA = RC.kA 

V. IMPLEMENTATION AND TESTING 

The architecture of SQL/IMS consists of the query decom- 
poser/translator, the IMS interface program, and the subresult 
recomposer. In addition, SQWIMS includes modules to interface a 
database protocol such as RDA [8 ] .  These modules are used to make 
a connection between a database protocol and SQL/IMS, and to 
exchange commands and data between a client process and SQWIMS 
through the database protocol. 

Currently, the retrieval part of the SQL subset described in Section 
I11 has been implemented, except for the embedded query interface. 
SQL/IMS is mostly in C [ 5 ]  with some assembler. SQLDMS is 
installed on an IBM 4381 S91E (Model 23) which runs MVSESA. 
A large production IMS database is used to test the performance 
of SQL/IMS. It is a part of the production Maintenance Management 
Information System (MMIS) obtained from a plant automation devel- 
opment group. The MMIS database contains maintenance scheduling 
information for plant equipment. 

The data structure diagram of the MMIS database is shown in Fig. 
5 with the number of occurrences for each segment type. The segment 
types, which are not in the hierarchy, are for index databases. EINVIX 
is the primary index for EINV. All other indexes are the secondary 
indexes for EINV, except for EINVSA which is the secondary index 
for EPPU. A part of the equivalent relational data definition of the 
MMIS database is provided in Appendix A. 

Sixteen SQL queries are formulated to test the performance of 
SQUIMS for various types of access to IMS databases. The queries 
1 to 8 can be found in [3] .  Some representative queries are listed in 
Appendix A. In addition, it is compared with the performance of DXT 
and PL/l. PL/l programs equivalent to the test SQL queries were 
written to access the MMIS database using DL/l. The comparison 
of the CPU time for SQL/IMS, DXT, and PL/1 is shown in Table 
11. Due to the lack of functionality, DXT could not process some of 
the queries. The corresponding entries are marked with "*." For the 
queries that are successfully executed by all of the systems, the three 
systems produced the same number of result records for each request. 
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TABLE 11 
COMPARISON OF PERFORMANCE OF SQWIMS, DXT, AND 

PL/l PROGRAM AGAINST A LARGE PRODUCFION DATABASE 

Request 
1 
2 
3 
4 
5 
6 
I 
8 
9 
10 
11 
12 
13 
14 
15 
16 

CPU Time (in seconds) 

36.049 35.382 25.026 
SQUIMS DXT PL/l 

35.823 
0.741 
65.263 
46.666 
1.584 
0.802 
59.763 
0.458 
0.459 
1.237 
0.440 
25.708 
0.432 
0.481 
0.511 

36.893 
4.142 
99.028 
82.687 
6.087 

* 
* 

36.901 
40.588 
36.367 
36.204 
53.051 
39.454 
54.837 
59.495 

25.141 
0.280 
47.429 
35.715 
0.906 
0.210 
41.951 
0.204 
0.205 
0.734 
0.214 
15.930 
0.212 
0.206 
0.205 

# Records 
in Result 

5 
539 
165 

5882 
978 
244 
91 

5033 
1 
1 

224 
7 

7459 
4 
3 

TABLE I11 
COMPARISON OF PERFORMANCE OF Two VERSIONS OF SQL/IMS 

SQL 
Query 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

SQL/IMS with Index 
Support 

36.049 60 019 
CPU DLil Calls 

35.823 
0.741 
65.263 
46.666 
1.584 
0.802 
59.763 
0.458 
0.459 
1.237 
0.440 
25.708 
0.432 
0.481 
0.511 

60 019 
166 

43 306 
43 764 

245 
92 

60 019 
2 
2 

225 
8 

7460 
8 
4 
4 

SQUIMS without Index 
Support 

35.712 60 019 
CPU DL/l Calls 

36.448 
0.744 
65.688 
47.302 
1.552 
0.814 
61.133 
37.753 
51.834 
36.259 
35.681 
46.946 
38.283 
19.747 
19.802 

60 019 
166 

43 306 
43 764 

245 
92 

60 019 
60 019 
60 019 
60 019 
60 019 
60 019 
58 689 

341 
341 

The queries 9 to 16 are used to test the access by using secondary 
indexes. These queries reference attributes on which IMS secondary 
keys are defined. An index is created on a secondary key which 
may be a composite key. For example, for Query 9 in Appendix A, 
a composite IMS key “xeinvsil” is defined on attribtes “plantsil,” 
“system,” “equip,” and “comp.” In processing this query, SQL/IMS 
modifies the qualification clause to xeinvsil = “to 111-10 sta 01” so 
that IMS can search using an index on xeinvsil. 

In order to evaluate the effect of supporting the secondary index, 
the performance of two versions of SQL/IMS are compared: 1) one 
supporting the secondary index (the same version used to produce 
the content in Table II), and 2) the other which does not support 
the secondary index. The comparison of these two versions is given 
in Table 111. Table I11 shows that the queries run much faster by 
using the secondary index, except for Query 13. Since Query 13 
requires 7460 DW1 calls in retrieving records using an index from 
EINV segment with a total 60 018 records, the use of index is not 
much faster than the scan, and it incurs an overhead of index search. 
However, it is unlikely that realistic queries retrieve a large portion 
of a large database. 

VI. CONCLUSIONS 
Translation methods for data definitions and queries were 

developed to access hierarchical databases using a relational 

query language. Another major issue settled was an automatic 
selection of IMS secondary indexes. Based on the methods 
developed, an SQL interface to IMS, called SQWIMS, was 
implemented. 

The performance of SQL/IMS was analyzed using a large pro- 
duction database. The performance of SQWIMS was compared with 
those of DXT, which is IBM’s SQL to DL/1 translator, and the PL/1 
program. The host language program (e.g., PL/l, COBOL) is the 
fastest way to access IMS data and thus the performance of the 
PL/1 program is the theoretical limit of the performance of any 
query language interface to IMS. Compared with the PL/l program, 
SQL/IMS incurs fixed overhead and variable overhead which is a 
function of the size of the database being accessed. For accessing a 
large IMS database, the percentage of the overhead in the processing 
time is small. 

Two versions of SQUIMS, with and without the secondary index 
support, were compared to examine the effect of the secondary index 
support. It was shown that the ability to use the IMS secondary 
indexes was extremely important. 

APPENDIX A 

Relational Data Definition and SQL Queries for the MMIS Database 
1) An equivalent relational data definition: 

Since relations contain a large number of attributes, only the 
relations and attributes referenced in queries are listed. 

EINV (EINVKEY, PLANTSIl, PLANTSI3, SYSTEM, 
EQUIP, COMP, ORIG-COST, 
BOOK-VALUE, DRAWING-SET, ACCOUNT, 
ACQUIRE-DDATE, COMMON, MAKE, MODEL) 

EVOL (EINVKEY, PRD-DOWNYTD) 

EPPU (EINVKEY, COMMON, MODELYEAR, MODELUS- 
AGE, MODELCOST, PLANT, 
SYSTEM, EQUIPMENT, COMP) 

2) Representative SQL queries to the MMIS database: 

8. select equip, orig-cost - book-value, 
prd-downytd 

from einv i, evol v 
where i.einvkey = v.einvkey 

order by 2; 
and i.drawing-set >= ‘0015640’ 

9. select einvkey, account, acquire-ddate, 
book-value 
from einv 

where plantsil = ‘TO‘ 
and system = ’111-10‘ 
and equip = ’STA 01‘ 
and comp = ‘ ‘; 

14. select einvkey, make, model, orig-cost, 
book-value 
from einv 

where plantsi3 = ‘TO‘ 
and common = ’402-0823F‘ 
and einvkey >= ’TO 0001331‘; 
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16. select i.einvkey, book-value, orig-cost, 
modelusage, modelcost 
from eppu p, einv i 

where p.plant = ‘TO’ 
and p.common = ‘ F L 0 0 0 4 1 9 ‘  
and p.system = ’LAMB TRANS 1’ 
and p.equipment = ‘STA 04’ 
and p.comp = ‘LH MECH DRIVE’ 
and p-einvkey = i.einvkey; 
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Join and Data Redistribution Algorithms for Hypercubes 

Chaitanya K. Baru and Sriram Padmanabhan 

Abstruct- An important aspect of database processing in parallel 
computer systems is the use of data parallel algorithms. This paper 
presents several parallel algorithms for the relational database join 
operation in a hypercube multicomputer system. The join algorithms 
are classified as cycling or global partitioning based on the tuple distri- 
bution method employed. The various algorithms are compared under 
a common framework, using time complexity analysis as well as an 
implementation on a 64 node NCUBE hypercube system. In general, the 
global partitioning algorithms demonstrate better speedup. However, the 
cycling algorithm can perform better than the global algorithms in specific 
situations, viz., when the difference in input relation cardinalities is large 
and the hypercube dimension is small. We also study the usefulness of the 
data redistribution operation in improving the performance of the join 
algorithms, in the presence of uneven data partitions. Our results indicate 
that redistribution significantly decreases the join algorithm execution 
times for unbalanced partitions. 

Index Terms-Join algorithms, parallel algorithms, hypercubes, data- 
base systems, all-to-all communication. 

I .  INTRODUCTION 
Recently, the idea of using coarse-grained “shared-nothing’’ mul- 

ticomputer architectures for database processing has been gaining 
momentum. In particular, the hypercube architecture [ 161 is an attrac- 
tive candidate for many parallelization projects, including database 
processing, due to several useful properties of the hypercube topology 
and the availability of commercial systems based on this topology. 
Several parallel database projects have used or assumed the hypercube 
interconnection scheme. For example, the Bubba [2] project assumes 
that a hypercube system is capable of providing the communication 
bandwidth required for database processing, the HC16-186 [3] project 
uses a 16 node hypercube system, while the Gamma [5] database 
software has been ported to a hypercube system. 

In a hypercube of S nodes, each node is connected to log(.V) 
neighbors by direct links. One of the key issues in a hypercube 
system is to use the interconnection topology effectively for parallel 
operations. The parallel join operation requires all-to-all communi- 
cation [8] in which each participating node sends a part or all of its 
data to every other node in the hypercube. Even with the advent of 
direct-connect communication technology, hypercube nodes must use 
efficient, coordinated algorithms to perform all-to-all communication 
[7], [14]. Allowing each node to route its data independently results 
in link contention and poor performance. In this paper, we describe 
join algorithms for the hypercube in which the nodes cooperate to 
perform the data communication efficiently while eliminating link 
and buffer contention problems. 

Join algorithms have been proposed and evaluated for general 
parallel architectures by a number of researchers including [ 131, 
[20]. For hypercube systems, cycling-, broadcast-, and hash-based 
join algorithms have been proposed [l], [ l l ] ,  [19]. An algorithm 
based on the semi-join operation has been described and compared 
with broadcast join algorithms in [12]. We describe three hypercube 
join algorithms, each of which uses a different method to distribute 
tbe tuples of the joining tables. The global sort algorithm uses a 
parallel sorting method to distribute the tuples of both joining tables. 
The global hash algorithm uses a hashing (partitioning) function 
for this purpose, while the cycling method broadcasts the tuples 
of one table to all sites of the other table by embedding a ring in 
the hypercube. We compare the hypercube join algorithms under a 
common framework using simple 0-notation analysis. Our analysis 
and experiments assume memory resident data. However, the same 
techniques for tuple distribution are applicable (and should be used) 
when data are stored in disks. Note that the emphasis in this paper 
is on the tuple distribution methods employed by the hypercube join 
algorithms. 

The join algorithms have been implemented on a 64-node hy- 
percube and results from a variety of experiments are presented. 
The experiments compare the performance of the join algorithms for 
different table cardinalities, unequal table sizes, and unbalanced table 
partitions. The results from these experiments indicate the trends in 
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