
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 5, NO. 1, FEBRUARY 1993 155

Concise Papers

Access to Indexed Hierarchical Databases
Using a Relational Query Language

Chin-Wan Chung and Kenneth E. McCloskey

Abstract- This paper presents an efficient means to access indexed
hierarchical databases using a relational query language. The purpose of
this paper is an effective sharing of heterogeneous distributed databases.
We investigate 1) translation of hierarchical data definition to an equiv-
alent relational data definition, 2) translation of a relational query
language statement to an equivalent program processable by a hierarchi-
cal database management system, and 3) automatic selection of secondary
indexes of hierarchical databases. A major portion of the result has been
implemented and the performance of the implemented system is analyzed.
The performance of the system is satisfactory for a wide range of test data
and test queries. It is shown that the utilization of the secondary index
significantly enhances the efficiency in accessing hierarchical databases.

Index Terms-Data model, data manipulation language, heterogeneous
database, translation, hierarchical database, relational query language,
index, performance.

I. INTRODUCTION

An effective sharing of heterogeneous databases is essential to
organizations with diverse database management systems (DBMS’s).
DATAPLEX [2] is a heterogeneous distributed DBMS which will
provide a common view of diverse databases and a standard query
language for organization-wide data sharing. In the architecture of
DATAPLEX, a relational model is used to provide a common view of
data and SQL is selected as a standard query language. A prototype
DATAPLEX which interfaces an IMS hierarchical DBMS and an
INGRES relational DBMS shows the feasibility of the DATAPLEX
architecture.

An interface to IMS in the DATAPLEX environment is important
because IMS has been the most heavily used mainframe DBMS in
large corporations. In addition, the techniques to interface IMS can
be applied to interface other nonrelational DBMS’s such as network
DBMS’s and object-oriented DBMS’s.

IMS is based on a hierarchical data model and uses DW1 as a data
manipulation language. While SQL is a high level query language,
DL/1 is a set of subroutine calls that must be embedded in a host
language, such as PL/1 or COBOL. Therefore, the interface to a
hierarchical DBMS poses a difficult translation problem. Another
major issue is the use of IMS secondary indexes. The secondary
index is an integral part of data management. The secondary index
management of IMS is quite different from that of the relational
DBMS.

Due to the need for a rapid prototyping, the prototype DATAPLEX
uses DXT [6] as an SQL to DL/1 translator. DXT is an IBM
product which translates a subset of SQL to DL/l. The experience
of DXT in the prototype DATAPLEX leads to a conclusion that the
performance of DXT is not adequate and the subset of SQL supported
by DXT is too restrictive for a full-function DATAPLEX. Therefore,

we decided to develop an SQL interface to IMS. This interface is
called SQL/IMS.

Based on the research results presented in this paper, the detailed
design of SQL/IMS has been completed and a major portion of the
design has been implemented. Benchmarks were prepared to test
various features and the performance of SQL/IMS. The comparison of
performance of SQL/IMS, DXT, and PL/1 programs was conducted
using a large production database.

In Section 11, the translation of IMS data definitions to equivalent
relational data definitions is presented. The translation of an SQL
query to a DL/l program and the execution of the program are
discussed in Section 111. Section IV explains the automatic selection
of IMS secondary indexes. Section V describes the implementaion of
SQL/IMS and the result of benchmark executions.

11. DATA DEFINITION TRANSLATION

A. Hierarchy to Relation Mapping
Each IMS segment type is mapped to a relation. The relation

corresponding to a segment type will include the key attributes of each
predecessor of the segment type in the hierarchy. This is intended
to produce a simple and normalized set of relations. This method
is illustrated in Example 1 in Section IV. Relations defined on the
dependents of nonkey segments do not include any attributes from
the nonkey segments. The navigation through access paths to access
multiple segments can be accomplished by equijoining relations in
an equivalent relational data definition on common key attributes.

The repeating group is an exception to the general mapping rules.
Repeating groups are common in IMS segment definitions. Since the
relational model has no provision for repeating groups they have
to be mapped to appropriate relational data structures. In general, a
repeating group can be mapped to an additional relation. Consider a
segment type X(k X , f S, f G, f H), where k S is a list of key fields
of segment type X , f S is a list of nonkey fields of S, and f G and
f H qre the list of fields of repeating group G and H, respectively.
The equivalent relational data definition of this segment type consists
of the following three relations:

R X (k R X , fX). RG(kRX. fG),RH(kRX.fH)

where kRX is the key of RX including the keys of all the
predecessors of -ri in the hierarchy. If S is a root segment type,
k R S = kX.

Certain repeating groups, however, cannot be mapped to additional
relations as follows:

Manuscript received December 22, 1989; revised December 7, 1990.
The authors are with the Computer Science Department, General Motors

IEEE Log Number 9205834.
Research Laboratories, Warren, MI 48090-9057

1041-4347/93$03.00 0

The position of a repeating group occurrence is significant.
For instance, SALES repeating group with the n th occurrence
indicating the sales figure of the nth month of a year. Such
a repeating group cannot be mapped to a relation because the
order of tuples in a relation is immaterial.
The relation mapped from a segment type containing a repeating
group does not have a key. In case of the segment type -Y above,
the relationship of which occurrences of the repeating group G
belong to which occurrence of the segment -Y can be identified
by joining RG and RS on kR.Y because k R S is the key of
RS. If R S did not have a key, the relationship between the
occurrences of X and G cannot be identified.

1993 IEEE

156 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 5, NO. 1, FEBRUARY 1993

Therefore, these repeating groups are mapped in a simple linear
form. For example, a repeating group G, with fields f l , f2 , f T l l ,

which can have a maximum of 77 occurrences would map as
G1, Gr. G,,, where G, = o , ~ , n r 2 nL7, , with relational
attributes n t J for j = 1.2. . . . , nt .

B. Source of Mapping Information
The information on IMS data definition necessary for translation

comes from various sources. In this subsection, we explain three
important data description features of IMS: the database definition,
the program specification block, and the program communication
block. IMS databases are defined in the database definitions (DBD’s).
The DBD’s supply all the physical description information for IMS to
create the database, such as access methods, storage devices, segment
size/ hierarchical position, and segment key attribute descriptions.
The segment nonkey attributes are usually defined in the application
programs that use the database.

Access to an IMS database is always from a procedural (i.e.,
COBOL, Assembler, PL/1 or “C”) language program. In order for
the program to communicate with IMS, an interface control block
called the program specification block (PSB) must be defined. Within
the PSB, access to multiple IMS databases may be provided by
defining one program communication block (PCB) per database
access required.

Although IMS primarily supports a hierarchical structure, net-
work style structures are possible via IMS logical databases (which
are actually physical links). Existing physical IMS hierarchies are
connected using physical pointers to form new “logical” hierarchies.

This additional structure could cause a mapping problem as not
all IMS structures would be hierarchies. Fortunately, there is a
simple solution; mapping is always based on the PSB. Since all IMS
databases described in a PSB present a consistent data structure (a
hierarchy), regardless of the underlying physical data strucure, this is
the most reasonable point from which to map.

The mapping information collected from the above indicated
sources is stored in two files: the physical definition table (PDT)
and the view definition table (VDT). The PDT contains all the IMS
access information for each attribute. The VDT contains a definition
of the relation as seen by the user. This provides three main features:
attributes names to be aliased, attribute type coercion, and relation
subsets to be formed.

111. QUERY TRANSLATION AND EXECUTION

Before discussing query translation and execution, the level of
SQL to be considered must be defined. One of the major issues in
developing an SQL interface to IMS is the incompatibility between
SQL and DL/l. SQL is a set (set of records) oriented language,
whereas DL/l is a record-oriented language.

SQL has more features than DL/1 and consequently there is no
DL/1 feature to which certain SQL features can be translated. These
SQL features must be implemented without using DL/1 features.
However, some of the SQL features are seldom used in appli-
cations. In fact, the most frequently used SQL features are the
ones corresponding to relational operations selection, projection, and
equijoin. These three operations can be translated to DL/1 features,
and equijoin can especially be processed very efficiently using DL/1
because, in many cases, the relationship between two entities is
implemented by pointers in IMS databases.

Based on the above facts, we have defined a subset of SQL to be
used by SQL/IMS with the following guiding principles:

include all SQL features that can be translated to DL/1 features
to make use of efficient IMS capabilities;

include SQL features that are frequently used in applications so
that most of the applications can be covered by the defined SQL
subset;
exclude SQL features that are seldom utilized to avoid the
implementation of a relational DBMS and the runtime overhead
of a large system.

Included in our SQL subset are:
SELECT - with DISTINCT, ORDER BY, equijoin, attribute
expressions, set functions (MAX, MIN, AVG, SUM, COUNT);
UPDATE - ANSI syntax [l] with limited search conditions (see
excluded below);
INSERT - ANSI syntax from value list only, subselect is not
supported;
DELETE - ANSI syntax with limited search conditions (see
excluded below).
Excluded in our SQL subset are:

HAVING, GROUP BY, nested queries and non-equijoins in
SELECT statements;
For all statements (SELECT, UPDATE, INSERT, DELETE),
NULL and EXISTS are not supported in WHERE clauses.

A nested query can be transformed to an equivalent non-nested
query. All the above SQL statements can be implemented for in-
teractive and embedded interfaces. Thus transactions are supported.
All the usual embedded cursor commands (e.g., DECLARE, OPEN,
CLOSE, WHERE CURRENT OF, and FETCH) are included.

An SQL query which uses unsupported SQL features is decom-
posed by DATAPLEX into two queries: Q1 (Query 1) contains
supported SQL features, and Q2 is the remaining part of the original
query. Then, Q1 is sent to SQL/IMS which translates it to a DL/1
program and submits the program to IMS. Q2 and the result of Q 1
are fed to a relational DBMS (which may be at a remote location).
The result of Q2 is the result of the original query.

Our approach to process an SQL query submitted to SQL/IMS is
to decompose the query into simpler queries that can be processed
by IMS and then perform remaining relational operations on the
intermediate results retrieved from IMS to obtain the final result.
There are two ways to translate a decomposed simple SQL query
to a DL/1 program: 1) to generate DL/1 code on the fly, and 2) to
generate parameter values from the SQL query and feed them to a
fixed parameterized DL/1 program. We take the second approach for
its simplicity and efficiency.

The process of query decomposition/translation involves breaking
the query down into units simple enough to be executed by an IMS
application program and converting them to an acceptable format.
For the sake of brevity this process will be referred to as translation.
There are seven steps of translation that all queries must pass through
prior to execution. Each step either removes functions that are not
processable by IMS or splits the query into subqueries that reference
a smaller range of data. For each act of translation imposed on
a query, a complementary recomposition query is generated to be
executed once the data has been retrieved from IMS. The seven steps
of translation are as follows:

remove operations in target lists nonsupported by IMS, such
as set functions;
convert predicates to disjunctive normal form;
remove expressions from predicates of resulting conjunctive
queries;
convert queries to graphs by representing a relation as a node
and a search condition as an arc;
decompose by database because an IMS query (DLD call) may
reference only one database;
decompose by cutting the equijoin arcs that do not correspond

lEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 5 , NO. 1, FEBRUARY 1993 157

to equijoins processable by navigating access paths between
IMS segment types. We call this type of equijoin a pathjoin;

7) select an IMS secondary index on attributes in a subquery. This
step is explained in detail in Section IV.

At this point the subqueries are processable by the IMS inter-
face program, the fixed parameterized DL/1 program. A detailed
description of steps 1)-6) can be found in [3] .

After translation, the query is executed and the result recomposed.
The query graph of a subquery contains the necessary parameter
values for the fixed parameterized DL/1 program. The individual
subqueries are passed to the IMS interface program for execution.
Once all the subqueries have executed, the recomposition queries are
applied against the retrieved data in the reverse order in which they
were created during translation as follows:

1) non-pathjoin equijoin;
2) qualification clause expression;
3) union of results from conjunctive subqueries;
4) DISTINCT;
5) set Function;
6) target list expression;
7) sorting, i.e., ORDER BY.

IV. INDEX SELECTION

IMS provides the capability to define mulitiple indexes for a
database. In general, IMS databases have at least one index called the
primary index that is defined as part of the initial database definition.
The primary index describes the actual physical ordering of the data-
base segments. Additional indexes may be defined providing alternate
access paths to database segments. These are called secondary index
databases.

There are three problems in providing automatic index selection.
1) In order to utilize a secondary index, the IMS application

must use a PCB (within the target PSB) that specifies the
secondary index database for its processing sequence. In the
mapping provided in the PDT, the primary index PCB is
defined. Therefore, the mapping must be dynamically altered
to take advantage of a secondary index.

2) IMS does not directly support composite keys. It is quite
common in IMS databases for a composite key to be defined
to IMS as a single character string which is then broken down
into its component attributes by the application program.

3) A secondary index database that indexes a segment of the
hierarchy other than the root segment will cause the hierarchy
to be inverted with the indexed segment assuming the root
position. The hierarchical mapping information stored in the
query graph must be dynamically altered to correctly depict
the new access path.

Each subquery is tested for potential substitution of an index for
its component attributes. (An index and an alternate key on which the
index is set are used interchangeably.) This is done by using a table
of indexes, available via the target PSB, called the segment index
table (SIT). In the default mapping provided in the PDT, the primary
index PCB will be selected, if 1) primary key search is used or 2) no
key search qualification is specified (i.e., scan the entire database).

For each index, the SIT contains the three mappings required to
transform the query: PCB, composite key, and hierarchy. The PCB
map gives the name of the PSB, the PCB position within the PSB,
and the name of the segment type that is the target of the index. The
composite key map describes the attributes that form the key of the
target segment type to the key attribute name as it is defined in IMS.
The hierarchy map describes the relationships of the segment types
that form the structure created through the use of the index.

There are two restrictions imposed in using indexes. The first is that
only one table of the subquery may be selected for index substitution.
This is due to the IMS requirement that database access is managed
via a PCB and that a PCB may only reference a single index.
Therefore, all the tables of a subquery must be accessed through the
same PCB. It is an inherent disadvantage of the hierarchical database
such as IMS that multiple indexes cannot be used simultaneously.
However, this disadvantage is offset by the advantage that the
reduction of search for a segment using an index reduces search for
all segments connected by access paths to the segment.

Secondly, the substitution of an index for its component attributes
is limited. Consider a composite index I consisting of attributes
A and B. Suppose A and B take values from characters o to
s for simplicity. The qualification clause (A = U AND B = 1 1)

is equivalent to (I = u t i) . However, the qualification clause (A
> U AND B > 1 1) is not equivalent to (I > U (,) . An equivalent
qualification clause generated from the two conditions is (I > 113

33)). As the number of attributes comprising an index grows, the
number of conditions generated in a qualification clause using the
index grows exponentially, which makes the manipulation and use
of the qualification clause impractical. Therefore, complete equality
comparisons are allowed. All others are partially transformed except
that not equal (i.e., <>) comparisons are not transformed.

The stratgey of our index selection algorithm is discussed below.
For each segment type referenced in a subquery, the SIT is searched
for an index to that segment. For each index found, the subquery
search conditions are tested for qualifications that refer to the at-
tributes that comprise the index. For an index to become a candidate
for substitution, the left-most attribute of the index must be referenced
in a qualification clause. If all the attributes of an index are referenced
and the comparison operators on the attributes are all “=,” then all
the attributes are used for an index substitution. If i attributes from
the left of an index are referenced with the comparison operator “=,”
then the i attributes are used. Otherwise, only the left-most attribute of
the index is used. The attribute(s) usable for an index substitution are
called qualified attribute(s). The index containing qualified attributes,
the sum of the lengths of which is the longest (in bytes), is selected
to reduce search as much as possible. If, after all the SIT’S have
been checked, a suitable index was found, then the query graph
is modified. The query qualification is tested again for additional
substitutions using the selected index. This is necessary as a user
may specify a range qualification (i.e., .-I > 0 AND .-I < 100). The
test and substitute process is repeated until no more substitutions are
possible. The algorithm for index selection is as follows.

AND (a t / < I <= 0: OR bt/ < I <= b: OR ... OR :U < I <=

Algorithm I
Input: the query graph and SIT.
Output: revised query graph and new PCB

initialize F , the final index selected, to be

initialize F L , the length of the final index
null.

selected, to 0.

€or each relation, R , , referenced in the graph:

if S, isnot an index €or the target segment

then skip to the next S,.
the index represented by S, becomes thecan-

using C , compute the sum of the lengths,

for each element, s,, of the SIT:
referenced by R,

didate index, C.

158

RC

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 5, NO. 1 , FEBRUARY 1993

kA kC c , c a c , c ,

Fig. 1. Example IMS database hierarchy.

RD

C L , of the qualified attributes.

to F L .
if C L > F L then assign C to F and C L

kA kC kD dl da

if F L > 0
for each relation in the query graph,
rebuild the hierarchical information that
describes therelative position ofthe seg-
ment mapped to this relation.

change the default PCB to the PCB that
provides F .

while F L > 0
modify the query graph by substituting
the index for the component attributes
as follows:

;suppose F consists of component
attributes al. a2,. . . ,a,, , where

; a , is the ith component from the
left. MAX denotes the patching

;of the unused bits with binary 1
and MIN with binary 0.

Case 1:

Case 2:

Case 3 :

Case 4 :

Case 5:

Case 6:

if there is

modify (a1 = S I AND a2 = s 2

to (F = ~1.23.. . . r l ,) where x, is

modify (a1 = .rl AND a2 = s2
AND . . . AND a L = s,) with
i < ?I to (F >= x1.rZ....rI 1 1 MIN
AND F <=.r1.r2...sL (1 MAX)
where 1 1 denotes concatena-
tion.
modify (a1 > S I)

modify (a1 >= SI)
to (F >= s1 (1 MIN).
modify (a1 < xl)

modify (a1 <= S I)
to (F <= x 1 1 1 MAX).

AND . . . AND a, = x,,)

the value of ah.

to (F > S I 1) MAX).

to (F < X I 1 1 MIN).

no qualified attribute for
F in the query qualification, update
F L to 0.

End Algorithm I

The following example illustrates the Algorithm I.
Example 1: Consider the IMS database hierarchy shown in Fig.

1. Segment attributes are shown in parentheses. Primary key fields
are denoted as k X (“key of -Y).

The relational mappings for the segment types in Fig. 1 are depicted

Fig. 2. Relational data definition of segment types in Fig. 1.

Fig. 3 Changed hierarchy for I (B) .

IDI
lel

Fig. 4. Changed hierarchy for I (C) .

in Fig. 2. IMS secondary indexes are denoted as I(-Y) (“index of X”).
The length of each attribute in bytes is also shown.

As explained previously, the use of an IMS secondary index
database may alter the hierarchy. For the indexes shown in Fig. 2,
the resulting hierarchies for I (B) and I (C) are shown in Figs. 3 and
4, respectively. I (A) does not change the hierarchy.

Assume a PSB has been created with the first PCB assigned to
the original database and the subsequent three PCB’s assigned to
indexes I (A) , I (B) , and I (C) , respectively. For each of the primary
and secondary indexes shown previously, their respective SIT entries
are given in Table I.

Suppose the following query is issued:

FROM RA,RC
SELECT *

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 5, NO. 1, FEBRUARY 1993

TABLE I
SEGMENT INDEX TABLE (SIT) FOR EXAMPLE 1 #I Index Segment PCB Hierarchy name, length Attrib;ltes

< (k A , 5) >

Fig. 1 < (kAA,5)(kC,4) >
Fig. 1 < (k 2 A , 5) (k C . 4) (k D , 5) >
Fig. 1
Fig. 3

< (n 1 , 5) (a z . 5) >
< (b l . 10) >

WHERE R A k A = RC.kA
AND a1 > x
AND ~2 = y
AND ~3 = f

AND C.I <> U

After parsing, the query would be translated to a query graph that
would be passed to the Algorithm I. The processing steps of the
algorithm are shown in the following.

for the relation, RA
SIT #1 is for segment ,4

k.4 becomes the candidate index c
C L becomes 0 because kA is not a qualified

C L is not greater than 0
attribute

SIT #2 is for segment B
SIT #3 is for segment C
SIT #4 is for segment D
SIT #5 is for segment A

I (A) becomes the candidate index C
C L becomes 5 because a1 is a qualified

C L is greater than 0 so assign I (A) to F
attribute

and 5 to F L
SIT #6 is for segment B
SIT #I is for segment c
SIT #1 is for segment ii
SIT #2 is for segment B
SIT #3 is for segment C

for the relation, RC

kA,kC becomes the candidate index C
C L becomes 0 because kA is not a qualified

C L is not greater than 5
attribute

SIT #4 is €or segment D
SIT #5 is for segment A
SIT #6 is for segment B
SIT #7 is for segment c

I (C) becomes the candidate index C
C L becomes 8 because ~ 2 . ~ 3 are qualified

C L is greater than 5 so assign I (C) to F
attributes

and 8 to F L

F L is greater than 0
rebuild the hierarchical information €or RA

change the PCB from 1 to 4
and RC using the hierarchy in Fig. 4

by Case 2: modify (C Z = y AND cg = :) to
(I (c) >= yf 1) 0000' AND

I (C) <= y: 1 1 ' F F F F ')

159

Fig. 5. Structure of MMIS database (number of occurrences).

there are n o more qualified attributes for
I (C) , change F L to 0.

The modified query is as follows:
SELECT *

FROM RA,RC

AND a1 > s
AND I (c) >= y3 1) '0000'
AND I (C) <= y s (1 ' F F F F '
AND ~1 <> (I

WHERE RAAA = RC.kA

V. IMPLEMENTATION AND TESTING

The architecture of SQL/IMS consists of the query decom-
poser/translator, the IMS interface program, and the subresult
recomposer. In addition, SQWIMS includes modules to interface a
database protocol such as RDA [8] . These modules are used to make
a connection between a database protocol and SQL/IMS, and to
exchange commands and data between a client process and SQWIMS
through the database protocol.

Currently, the retrieval part of the SQL subset described in Section
I11 has been implemented, except for the embedded query interface.
SQL/IMS is mostly in C [5] with some assembler. SQLDMS is
installed on an IBM 4381 S91E (Model 23) which runs MVSESA.
A large production IMS database is used to test the performance
of SQL/IMS. It is a part of the production Maintenance Management
Information System (MMIS) obtained from a plant automation devel-
opment group. The MMIS database contains maintenance scheduling
information for plant equipment.

The data structure diagram of the MMIS database is shown in Fig.
5 with the number of occurrences for each segment type. The segment
types, which are not in the hierarchy, are for index databases. EINVIX
is the primary index for EINV. All other indexes are the secondary
indexes for EINV, except for EINVSA which is the secondary index
for EPPU. A part of the equivalent relational data definition of the
MMIS database is provided in Appendix A.

Sixteen SQL queries are formulated to test the performance of
SQUIMS for various types of access to IMS databases. The queries
1 to 8 can be found in [3] . Some representative queries are listed in
Appendix A. In addition, it is compared with the performance of DXT
and PL/l. PL/l programs equivalent to the test SQL queries were
written to access the MMIS database using DL/l. The comparison
of the CPU time for SQL/IMS, DXT, and PL/1 is shown in Table
11. Due to the lack of functionality, DXT could not process some of
the queries. The corresponding entries are marked with "*." For the
queries that are successfully executed by all of the systems, the three
systems produced the same number of result records for each request.

160 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 5 , NO. 1, FEBRUARY 1993

TABLE 11
COMPARISON OF PERFORMANCE OF SQWIMS, DXT, AND

PL/l PROGRAM AGAINST A LARGE PRODUCFION DATABASE

Request
1
2
3
4
5
6
I
8
9
10
11
12
13
14
15
16

CPU Time (in seconds)

36.049 35.382 25.026
SQUIMS DXT PL/l

35.823
0.741
65.263
46.666
1.584
0.802
59.763
0.458
0.459
1.237
0.440
25.708
0.432
0.481
0.511

36.893
4.142
99.028
82.687
6.087

*
*

36.901
40.588
36.367
36.204
53.051
39.454
54.837
59.495

25.141
0.280
47.429
35.715
0.906
0.210
41.951
0.204
0.205
0.734
0.214
15.930
0.212
0.206
0.205

Records
in Result

5
539
165

5882
978
244
91

5033
1
1

224
7

7459
4
3

TABLE I11
COMPARISON OF PERFORMANCE OF Two VERSIONS OF SQL/IMS

SQL
Query

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

SQL/IMS with Index
Support

36.049 60 019
CPU DLil Calls

35.823
0.741
65.263
46.666
1.584
0.802
59.763
0.458
0.459
1.237
0.440
25.708
0.432
0.481
0.511

60 019
166

43 306
43 764

245
92

60 019
2
2

225
8

7460
8
4
4

SQUIMS without Index
Support

35.712 60 019
CPU DL/l Calls

36.448
0.744
65.688
47.302
1.552
0.814
61.133
37.753
51.834
36.259
35.681
46.946
38.283
19.747
19.802

60 019
166

43 306
43 764

245
92

60 019
60 019
60 019
60 019
60 019
60 019
58 689

341
341

The queries 9 to 16 are used to test the access by using secondary
indexes. These queries reference attributes on which IMS secondary
keys are defined. An index is created on a secondary key which
may be a composite key. For example, for Query 9 in Appendix A,
a composite IMS key “xeinvsil” is defined on attribtes “plantsil,”
“system,” “equip,” and “comp.” In processing this query, SQL/IMS
modifies the qualification clause to xeinvsil = “to 111-10 sta 01” so
that IMS can search using an index on xeinvsil.

In order to evaluate the effect of supporting the secondary index,
the performance of two versions of SQL/IMS are compared: 1) one
supporting the secondary index (the same version used to produce
the content in Table II), and 2) the other which does not support
the secondary index. The comparison of these two versions is given
in Table 111. Table I11 shows that the queries run much faster by
using the secondary index, except for Query 13. Since Query 13
requires 7460 DW1 calls in retrieving records using an index from
EINV segment with a total 60 018 records, the use of index is not
much faster than the scan, and it incurs an overhead of index search.
However, it is unlikely that realistic queries retrieve a large portion
of a large database.

VI. CONCLUSIONS
Translation methods for data definitions and queries were

developed to access hierarchical databases using a relational

query language. Another major issue settled was an automatic
selection of IMS secondary indexes. Based on the methods
developed, an SQL interface to IMS, called SQWIMS, was
implemented.

The performance of SQL/IMS was analyzed using a large pro-
duction database. The performance of SQWIMS was compared with
those of DXT, which is IBM’s SQL to DL/1 translator, and the PL/1
program. The host language program (e.g., PL/l, COBOL) is the
fastest way to access IMS data and thus the performance of the
PL/1 program is the theoretical limit of the performance of any
query language interface to IMS. Compared with the PL/l program,
SQL/IMS incurs fixed overhead and variable overhead which is a
function of the size of the database being accessed. For accessing a
large IMS database, the percentage of the overhead in the processing
time is small.

Two versions of SQUIMS, with and without the secondary index
support, were compared to examine the effect of the secondary index
support. It was shown that the ability to use the IMS secondary
indexes was extremely important.

APPENDIX A

Relational Data Definition and SQL Queries for the MMIS Database
1) An equivalent relational data definition:

Since relations contain a large number of attributes, only the
relations and attributes referenced in queries are listed.

EINV (EINVKEY, PLANTSIl, PLANTSI3, SYSTEM,
EQUIP, COMP, ORIG-COST,
BOOK-VALUE, DRAWING-SET, ACCOUNT,
ACQUIRE-DDATE, COMMON, MAKE, MODEL)

EVOL (EINVKEY, PRD-DOWNYTD)

EPPU (EINVKEY, COMMON, MODELYEAR, MODELUS-
AGE, MODELCOST, PLANT,
SYSTEM, EQUIPMENT, COMP)

2) Representative SQL queries to the MMIS database:

8. select equip, orig-cost - book-value,
prd-downytd

from einv i, evol v
where i.einvkey = v.einvkey

order by 2;
and i.drawing-set >= ‘0015640’

9. select einvkey, account, acquire-ddate,
book-value
from einv

where plantsil = ‘TO‘
and system = ’111-10‘
and equip = ’STA 01‘
and comp = ‘ ‘;

14. select einvkey, make, model, orig-cost,
book-value
from einv

where plantsi3 = ‘TO‘
and common = ’402-0823F‘
and einvkey >= ’TO 0001331‘;

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 5, NO. 1, FEBRUARY 1993 161

16. select i.einvkey, book-value, orig-cost,
modelusage, modelcost
from eppu p, einv i

where p.plant = ‘TO’
and p.common = ‘ F L 0 0 0 4 1 9 ‘
and p.system = ’LAMB TRANS 1’
and p.equipment = ‘STA 04’
and p.comp = ‘LH MECH DRIVE’
and p-einvkey = i.einvkey;

ACKNOWLEDGMENT

The authors would like to thank Jeff Hollar and Mike McGreevy for
their participation in the development of SQLDMS. They acknowl-
edge the helpful comments of Relational Technology, Inc. personnel
about the design of SQL/IMS.

REFERENCES

ANSI X3H2-86-141, Database Language SQL2, Nov. 1986.
C. W. Chung, “DATAPLEX:An access to heterogeneous distributed
databases,” Commun. ACM, vol. 33, pp. 70-80, Jan. 1990.
C. W. Chung and K. E. McCloskey, “A relational query language
interface to a hierarchical database management system,” in Proc.
Second Int. Con$ on Data and Knowledge Systems for Manufacturing
and Engineering, Oct. 1989, pp. 105-112.
E. F. Codd, “A relational model of data for large shared data banks,”
Commun. ACM, vol. 13, pp. 377-387, June 1970.
C Language Manual (SCI9-1128-0), International Business Machines
Corporation, 1986.
Data Extract Version 2.3: General Information (GC26-4241), Interna-
tional Business Machines Corporation, May 1988.
IMSIVS 1.3 General Information Manual (GH20-1260), International
Business Machines Corporation, Mar. 1984.
ISO/JTC 1/SC 2/WG 3N, Information Systems - Open Systems -
Generic Remote Database Access Service and Protocol, Sept. 1988.
T. Landers and R. L. Rosenberg, “An overview of Multibase,” Dis-
tributed Databases, pp. 153-184, 1982.
C. Zaniolo, “Design of relational views over network schemas,” in Proc.
ACM SIGMOD Con., May 1979, pp. 179-190.

Join and Data Redistribution Algorithms for Hypercubes

Chaitanya K. Baru and Sriram Padmanabhan

Abstruct- An important aspect of database processing in parallel
computer systems is the use of data parallel algorithms. This paper
presents several parallel algorithms for the relational database join
operation in a hypercube multicomputer system. The join algorithms
are classified as cycling or global partitioning based on the tuple distri-
bution method employed. The various algorithms are compared under
a common framework, using time complexity analysis as well as an
implementation on a 64 node NCUBE hypercube system. In general, the
global partitioning algorithms demonstrate better speedup. However, the
cycling algorithm can perform better than the global algorithms in specific
situations, viz., when the difference in input relation cardinalities is large
and the hypercube dimension is small. We also study the usefulness of the
data redistribution operation in improving the performance of the join
algorithms, in the presence of uneven data partitions. Our results indicate
that redistribution significantly decreases the join algorithm execution
times for unbalanced partitions.

Index Terms-Join algorithms, parallel algorithms, hypercubes, data-
base systems, all-to-all communication.

I . INTRODUCTION
Recently, the idea of using coarse-grained “shared-nothing’’ mul-

ticomputer architectures for database processing has been gaining
momentum. In particular, the hypercube architecture [161 is an attrac-
tive candidate for many parallelization projects, including database
processing, due to several useful properties of the hypercube topology
and the availability of commercial systems based on this topology.
Several parallel database projects have used or assumed the hypercube
interconnection scheme. For example, the Bubba [2] project assumes
that a hypercube system is capable of providing the communication
bandwidth required for database processing, the HC16-186 [3] project
uses a 16 node hypercube system, while the Gamma [5] database
software has been ported to a hypercube system.

In a hypercube of S nodes, each node is connected to log(.V)
neighbors by direct links. One of the key issues in a hypercube
system is to use the interconnection topology effectively for parallel
operations. The parallel join operation requires all-to-all communi-
cation [8] in which each participating node sends a part or all of its
data to every other node in the hypercube. Even with the advent of
direct-connect communication technology, hypercube nodes must use
efficient, coordinated algorithms to perform all-to-all communication
[7], [14]. Allowing each node to route its data independently results
in link contention and poor performance. In this paper, we describe
join algorithms for the hypercube in which the nodes cooperate to
perform the data communication efficiently while eliminating link
and buffer contention problems.

Join algorithms have been proposed and evaluated for general
parallel architectures by a number of researchers including [131,
[20]. For hypercube systems, cycling-, broadcast-, and hash-based
join algorithms have been proposed [l], [l l] , [19]. An algorithm
based on the semi-join operation has been described and compared
with broadcast join algorithms in [12]. We describe three hypercube
join algorithms, each of which uses a different method to distribute
tbe tuples of the joining tables. The global sort algorithm uses a
parallel sorting method to distribute the tuples of both joining tables.
The global hash algorithm uses a hashing (partitioning) function
for this purpose, while the cycling method broadcasts the tuples
of one table to all sites of the other table by embedding a ring in
the hypercube. We compare the hypercube join algorithms under a
common framework using simple 0-notation analysis. Our analysis
and experiments assume memory resident data. However, the same
techniques for tuple distribution are applicable (and should be used)
when data are stored in disks. Note that the emphasis in this paper
is on the tuple distribution methods employed by the hypercube join
algorithms.

The join algorithms have been implemented on a 64-node hy-
percube and results from a variety of experiments are presented.
The experiments compare the performance of the join algorithms for
different table cardinalities, unequal table sizes, and unbalanced table
partitions. The results from these experiments indicate the trends in

Manuscript received January 19, 1990; revised March 14, 1991 and October
7, 1991. This work was supported in part by the National Science Foundation
under Grant IRI-8710855.

The authors are with the Electrical Engineering and Computer Science
Department, University of Michigan, Ann Arbor, MI 48109.

IEEE Log Number 9207082.

1041-4341/93$03.00 0 1993 IEEE

